Surname	Centre Number	Candidate Number
Other Names		0

GCSE

3300U60-1

MATHEMATICS UNIT 2: CALCULATOR-ALLOWED HIGHER TIER

THURSDAY, 7 JUNE 2018 - MORNING

1 hour 45 minutes

ADDITIONAL MATERIALS

A calculator will be required for this paper.

A ruler, a protractor and a pair of compasses may be required.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen or correction fluid.

You may use a pencil for graphs and diagrams only.

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer **all** the questions in the spaces provided.

If you run out of space, use the continuation page at the back of the booklet. Question numbers must be given for all work written on the continuation page.

Take π as 3·14 or use the π button on your calculator.

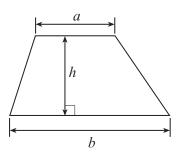
INFORMATION FOR CANDIDATES

You should give details of your method of solution when appropriate.

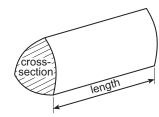
Unless stated, diagrams are not drawn to scale.

Scale drawing solutions will not be acceptable where you are asked to calculate.

The number of marks is given in brackets at the end of each question or part-question.


In question 3, the assessment will take into account the quality of your linguistic and mathematical organisation, communication and accuracy in writing.

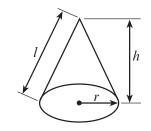
For Examiner's use only					
Question	Maximum Mark	Mark Awarded			
1.	4				
2.	3				
3.	6				
4.	4				
5.	3				
6.	5				
7.	6				
8.	5				
9.	6				
10.	2				
11.	3				
12.	4				
13.	3				
14.	2				
15.	4				
16.	4				
17.	5				
18.	4				
19.	7				
Total	80				



Formula List - Higher Tier

Area of trapezium = $\frac{1}{2}(a+b)h$

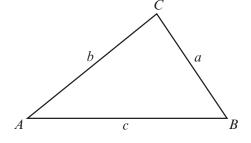
Volume of prism = area of cross-section × length



Volume of sphere = $\frac{4}{3}\pi r^3$ Surface area of sphere = $4\pi r^2$

Volume of cone = $\frac{1}{3}\pi r^2 h$

Curved surface area of cone = $\pi r l$



In any triangle ABC

Sine rule
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Cosine rule
$$a^2 = b^2 + c^2 - 2bc \cos A$$

Area of triangle =
$$\frac{1}{2}ab \sin C$$

The Quadratic Equation

The solutions of $ax^2 + bx + c = 0$ where $a \ne 0$ are given by $x = \frac{-b \pm \sqrt{(b^2 - 4ac)}}{2a}$

$$x = \frac{-b \pm \sqrt{(b^2 - 4ac)}}{2a}$$

Annual Equivalent Rate (AER)

AER, as a decimal, is calculated using the formula $\left(1+\frac{i}{n}\right)^n-1$, where i is the nominal interest rate per annum as a decimal and n is the number of compounding periods per annum.

. (a)	Calculate (12	$\frac{145.3}{2.4 - 9.8)^3}$, giving	your answer co	orrect to 3 signific	ant figures.	[2]
(b)	Calculate the	e reciprocal of 47,	giving your ans	wer correct to 4 o	decimal places.	[2]
. Circl		nswer in each of the following values of the following		external angle of a	a regular polygon? 72°	[1]
(<i>b</i>)	It is turned c	a spinner is facing lockwise through ection will the arrow	an angle of 153		None of these	[1]
(c)		a bearing of 100°		180°	80°	[1]

© WJEC CBAC Ltd. (3300U60-1)

-	In this question, you will be assessed on the quality of your organisation, communication and accuracy in writing.
	A solution of the equation
	$x^3 - 7x - 51 = 0$
	lies between 4 and 5.
	Use the method of trial and improvement to find this solution correct to 1 decimal place. You must show all your working. [4 + 2 OCW]

(a)	The highest common factor (HCF) of 30 and 75 is the square root of a number. What is the number?	[2
(b)	The cube root of 32·768 is $33\frac{1}{3}$ % of a number.	r
	What is the number?	[2

5.	PQR is a right-angled triangle, as shown below.
	PQ = 1.41 m and $PR = 0.89 m$

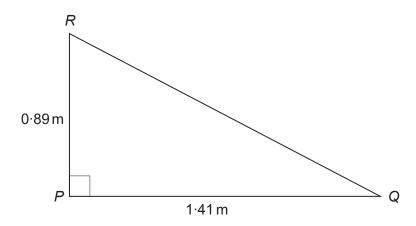
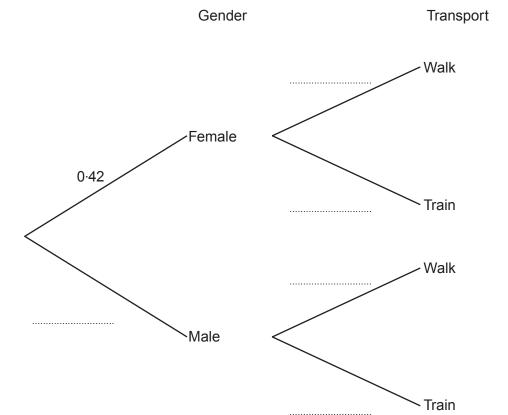


Diagram not drawn to scale

Calculate the length of QR.	[3]
	······································
	•••••••••••••••••••••••••••••••••••••••
	······································

6. Visitors to the top of Snowdon can either walk up the mountain or take the mountain railway from Llanberis.

On a particular day, a visitor to the top of Snowdon is chosen at random.

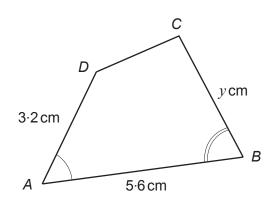

The probability that this person is female is 0.42.

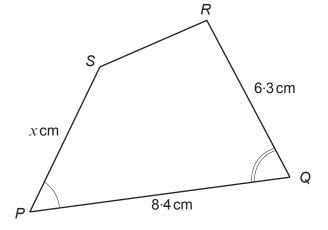
The probability that this person took the train is 0.35.

The decision to walk or take the train is independent of gender.

(a) Complete the tree diagram shown below.

[3]




(b)	The person chosen at random receives a gift voucher.
	What is the probability that this person is female and travelled up the mountain by train?
	[2]

© WJEC CBAC Ltd. (3300U60-1)

8

7. The diagrams below show two similar shapes, ABCD and PQRS.

Diagrams not drawn to scale

[2]	y Calculate the value of x .	
[2]) Calculate the value of <i>y</i> .	(b)

80

(c)	Explain clearly why the following statement cannot be true. [2]					
	'The length of CD is 3.9 cm and the length of RS is 6.5 cm'.					

© WJEC CBAC Ltd. (3300U60-1) Turn over.

8. A rectangle of length 12 cm and width (2x - y) cm has an area of 72 cm².

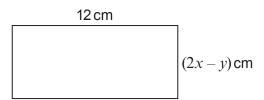


Diagram not drawn to scale

KLMN is a kite where KL = 3x cm and LM = y cm.

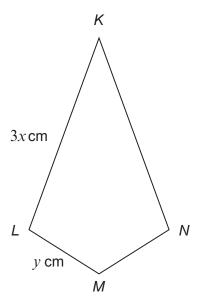


Diagram not drawn to scale

The perimeter of the kite $KLMN = 33 \, \text{cm}$.

Calculate the values of x and y.

You must show all your working.

Do not use a trial and improvement method.	[5]

11							
							E
					 	•••••	

•••••					 		

3300U601 11

Examiner only

9. ABC and CDE are two right-angled triangles.

In triangle ABC, $AB = 6.5 \, \text{cm}$ and $BC = 10.4 \, \text{cm}$. In triangle CDE, $CE = 9.4 \, \text{cm}$.

$$B\widehat{C}E = 22^{\circ}$$
.

$$A\widehat{C}B = x^{\circ}$$
.

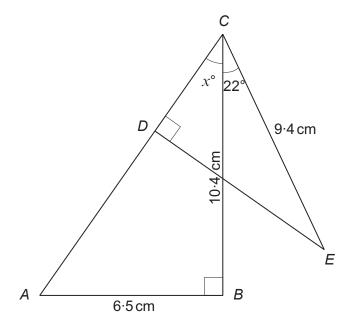


Diagram not drawn to scale

(a)	Calculate the value of x .	[3]

(b) Hence find the length of DE.	[3]	Examine only

		Exami
10.	Factorise $4m^2 - 289$. [2]	only
		-
		-
		-
	Calculate the volume of a pyramid with a base area of 13 200 cm ² and a perpendicular height of 460 cm.	f
	Give your answer in m ³ . [3]	
	Diagram not drawn to scale	
	Volume = m ³	

12. Five quadratic equations are listed below. Draw a line connecting each equation to its solution. One has been completed for you.

[4]

Equation

$$x^2 - 4 = 0$$

Solution

$$x = 1, x = -\frac{3}{2}$$

$$x = 2, x = -2$$

$$x = 1, x = \frac{3}{2}$$

$$x = \frac{4}{9}$$

$$x = -1, x = -\frac{2}{3}$$

$$x = -\frac{2}{3}, x = \frac{2}{3}$$

$$x = \frac{3}{2}, x = -\frac{3}{2}$$

$$x = 1, x = -\frac{2}{3}$$

$$x = -\frac{9}{4}$$

$$x = 0, x = \frac{2}{3}$$

$$x = \frac{81}{16}$$

$$x = 0, x = -\frac{3}{2}$$

$$x = \frac{3}{2}$$

$$x = -\frac{9}{4}, x = 0$$

x(2x+3)=0

(x-1)(2x-3) = 0

(2x - 3)(2x + 3) = 0

 $(4x+9)^2=0$

		Examii	ner
13.	The values a = 27, b = 1·9 and c = 0·81 are each correct to 2 significant figures.	Offiny	
	Use the formula $d = \frac{a-b}{c}$ to calculate the least value of d .		
		[2]	
	You must show all your working.	[3]	

[2]

14. A and B are points on a circle with centre O. Calculate the length of the arc AB shown below.

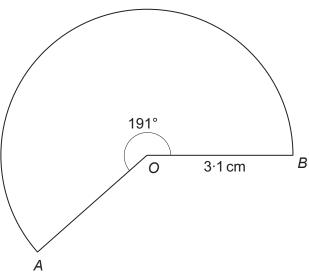


Diagram not drawn to scale

••••	 										
• • • •	 										
••••	 										

Express the following as a single fraction in its simplest form.	[4]
$\frac{2}{3x-5} - \frac{7}{11x-13}$	

16.	A bag contains 200 beads. Some of the beads are red.	Exa
	A bead is selected at random. Its colour is recorded and then the bead is replaced . A second bead is selected at random and its colour is also recorded.	
	The probability that two red beads are selected is 0·1369. Calculate the number of red beads in the bag. [4]]
		-
		-

	Exam
Solve the equation $(2x + 5)(3x - 11) = 7$. Give your answers correct to 2 decimal places. [5]	on

		Examiner only
18.	Make c the subject of the following formula. [4]	
	$\sqrt{gc^2 - v} = c$	
	$\sqrt{g}c - v = c$	

Examiner only

19.	BC is the	tangent to	the circle	e at _l	point <i>E</i>	, as shown	below.

EC = 8 cm, AC = 11 cm and $D\widehat{C}E = 31^{\circ}$.

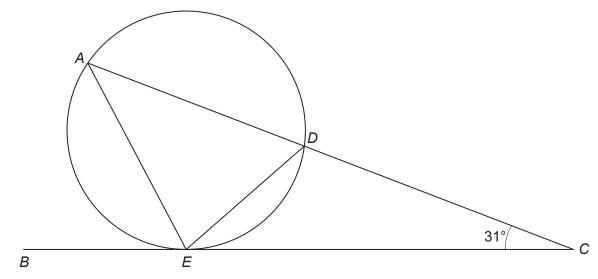


Diagram not drawn to scale

(a)	Calculate the length of AE.	[3]
•••••		

(b) Calculate the size of \widehat{CED} .	[4]
END OF PAPER	

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examiner only

