Surname
Other Names

Centre Number	Candidate Number

GCSE

wjec cbac

3300U60-1

MATHEMATICS
 UNIT 2: CALCULATOR-ALLOWED
 HIGHER TIER

THURSDAY, 7 JUNE 2018 - MORNING
1 hour 45 minutes

ADDITIONAL MATERIALS

A calculator will be required for this paper.
A ruler, a protractor and a pair of compasses may be required.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen or correction fluid.
You may use a pencil for graphs and diagrams only.
Write your name, centre number and candidate number in the spaces at the top of this page.
Answer all the questions in the spaces provided.
If you run out of space, use the continuation page at the back of the booklet. Question numbers must be given for all work written on the continuation page.
Take π as 3.14 or use the π button on your calculator.

INFORMATION FOR CANDIDATES

You should give details of your method of solution when appropriate.
Unless stated, diagrams are not drawn to scale.
Scale drawing solutions will not be acceptable where you are asked to calculate.
The number of marks is given in brackets at the end of each question or part-question.
In question 3, the assessment will take into account the quality of your linguistic and mathematical organisation,

For Examiner's use only		
Question	Maximum Mark	Mark Awarded
1.	4	
2.	3	
3.	6	
4.	4	
5.	3	
6.	5	
7.	6	
8.	5	
9.	6	
10.	2	
11.	3	
12.	4	
13.	3	
14.	2	
15.	4	
16.	4	
17.	5	
18.	4	
19.	7	
Total	80	

Formula List - Higher Tier

Area of trapezium $=\frac{1}{2}(a+b) h$

Volume of prism $=$ area of cross-section \times length

Volume of sphere $=\frac{4}{3} \pi r^{3}$
Surface area of sphere $=4 \pi r^{2}$

Volume of cone $=\frac{1}{3} \pi r^{2} h$
Curved surface area of cone $=\pi r l$

In any triangle $A B C$
Sine rule $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
Cosine rule $a^{2}=b^{2}+c^{2}-2 b c \cos A$
Area of triangle $=\frac{1}{2} a b \sin C$

The Quadratic Equation

The solutions of $a x^{2}+b x+c=0$ where $a \neq 0$ are given by $\quad x=\frac{-b \pm \sqrt{\left(b^{2}-4 a c\right)}}{2 a}$

Annual Equivalent Rate (AER)

AER, as a decimal, is calculated using the formula $\left(1+\frac{i}{n}\right)^{n}-1$, where i is the nominal interest rate per annum as a decimal and n is the number of compounding periods per annum.

1. (a) Calculate $\frac{145 \cdot 3}{(12 \cdot 4-9 \cdot 8)^{3}}$, giving your answer correct to 3 significant figures.
\qquad
\qquad
(b) Calculate the reciprocal of 47, giving your answer correct to 4 decimal places.
2. Circle the correct answer in each of the following.
(a) Which of the following values cannot be an external angle of a regular polygon?

10°	18°	30°	48°	72°

(b) An arrow on a spinner is facing north. It is turned clockwise through an angle of 1530°. In which direction will the arrow now be facing?

North
East
South
West
None of these
(c) Point A is on a bearing of 100° from point B.

What is the bearing of point B from point A ?

260°	100°	280°	180°	80°

3. In this question, you will be assessed on the quality of your organisation, communication and accuracy in writing.

A solution of the equation

$$
x^{3}-7 x-51=0
$$

lies between 4 and 5 .
Use the method of trial and improvement to find this solution correct to 1 decimal place.
You must show all your working.
4. (a) The highest common factor (HCF) of 30 and 75 is the square root of a number.
What is the number?

Examiner
(b) The cube root of 32.768 is $33 \frac{1}{3} \%$ of a number.

What is the number?
5. $P Q R$ is a right-angled triangle, as shown below.
$P Q=1.41 \mathrm{~m}$ and $P R=0.89 \mathrm{~m}$.

Diagram not drawn to scale

Calculate the length of $Q R$.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
6. Visitors to the top of Snowdon can either walk up the mountain or take the mountain railway from Llanberis.
On a particular day, a visitor to the top of Snowdon is chosen at random.
The probability that this person is female is 0.42 .
The probability that this person took the train is 0.35 .
The decision to walk or take the train is independent of gender.
(a) Complete the tree diagram shown below.

(b) The person chosen at random receives a gift voucher. What is the probability that this person is female and travelled up the mountain by train?
\qquad
\qquad
\qquad
\qquad
\qquad
\square
7. The diagrams below show two similar shapes, $A B C D$ and $P Q R S$.

Diagrams not drawn to scale
(a) Calculate the value of x.
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Calculate the value of y.
\qquad
\qquad
\qquad
\qquad
\qquad
(c) Explain clearly why the following statement cannot be true.
'The length of $C D$ is 3.9 cm and the length of $R S$ is 6.5 cm '.
8. A rectangle of length 12 cm and width $(2 x-y) \mathrm{cm}$ has an area of $72 \mathrm{~cm}^{2}$.

Diagram not drawn to scale
$K L M N$ is a kite where $K L=3 x \mathrm{~cm}$ and $L M=y \mathrm{~cm}$.

Diagram not drawn to scale

The perimeter of the kite $K L M N=33 \mathrm{~cm}$.
Calculate the values of x and y.
You must show all your working.
Do not use a trial and improvement method.
\qquad
\qquad
\qquad
\qquad
\qquad
9. $A B C$ and $C D E$ are two right-angled triangles.

In triangle $A B C, A B=6.5 \mathrm{~cm}$ and $B C=10.4 \mathrm{~cm}$.
In triangle $C D E, C E=9.4 \mathrm{~cm}$.
$B \widehat{C} E=22^{\circ}$.
$A \widehat{C B}=x^{\circ}$.

(a) Calculate the value of x.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Hence find the length of $D E$.
\qquad
\qquad
\qquad
\qquad
\qquad
10. Factorise $4 m^{2}-289$.
11. Calculate the volume of a pyramid with a base area of $13200 \mathrm{~cm}^{2}$ and a perpendicular height of 460 cm .
Give your answer in m^{3}.

Diagram not drawn to scale
\qquad
12. Five quadratic equations are listed below.

Draw a line connecting each equation to its solution.
One has been completed for you.
[4]

Equation

Solution

$$
x=1, x=\frac{3}{2}
$$

$$
x(2 x+3)=0
$$

$$
x=\frac{4}{9}
$$

$$
x=-1, x=-\frac{2}{3}
$$

$$
x=-\frac{2}{3}, x=\frac{2}{3}
$$

$$
x=\frac{3}{2}, x=-\frac{3}{2}
$$

$$
x=1, x=-\frac{2}{3}
$$

$$
x=-\frac{9}{4}
$$

$$
x=0, x=\frac{2}{3}
$$

$$
(2 x-3)(2 x+3)=0
$$

$$
x=\frac{81}{16}
$$

$$
x=0, x=-\frac{3}{2}
$$

$$
x=\frac{3}{2}
$$

$$
(4 x+9)^{2}=0
$$

$$
x=-\frac{9}{4}, x=0
$$

13. The values $a=27, b=1.9$ and $c=0.81$ are each correct to 2 significant figures.

Use the formula $d=\frac{a-b}{c}$ to calculate the least value of d.
You must show all your working.
14. A and B are points on a circle with centre O. Calculate the length of the arc $A B$ shown below.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
15. Express the following as a single fraction in its simplest form.

$$
\frac{2}{3 x-5}-\frac{7}{11 x-13}
$$

16. A bag contains 200 beads.

Some of the beads are red.
A bead is selected at random.
Its colour is recorded and then the bead is replaced.
A second bead is selected at random and its colour is also recorded.
The probability that two red beads are selected is $0 \cdot 1369$.
Calculate the number of red beads in the bag.
\qquad
17. Solve the equation $(2 x+5)(3 x-11)=7$. Give your answers correct to 2 decimal places.
18. Make c the subject of the following formula.

$$
\sqrt{g c^{2}-v}=c
$$

19. $B C$ is the tangent to the circle at point E, as shown below.
$E C=8 \mathrm{~cm}, A C=11 \mathrm{~cm}$ and $D \widehat{C} E=31^{\circ}$.

(a) Calculate the length of $A E$.

(b) Calculate the size of $C \widehat{E} D$.

Examiner

END OF PAPER

	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Question } \\ \text { number } \end{array} \\ \hline \end{array}$	Additional page, if required. Write the question number(s) in the left-hand margin.

